Lec 02 - (A very brief)
Introduction to Python

Statistical Computing and Computation

Sta 663 | Spring 2022

Dr. Colin Rundel

Basic types

2/28

Type system basics

Like R, Python is a dynamically typed language but the implementation details are very
different (as it makes extensive use of an object oriented class system for implementation,
more on this later).

Some of the core types,

True type(True)

True ## <class 'bool'>
1 type(1)

1 ## <class 'int'>
1.0 type(1.0)

1.0 ## <class 'float'>
1413 type(1+13)

Notg -3l of these types are for scalar values. ## <class 'complex'>

Dynamic types

As just mentioned, Python is dynamically typed langiage so most basic operations will attempt

to coerce object to a consistent type appropriate for the operation.

Boolean operations:

1 and True
True

0 or 1
1

not @
True

not (0+0j)
True

not (0+1j)

False

Comparisons:

5. >1
True
5. =5
True
1 > True
False
(1+03) == 1
True
"abc" < "ABC"
False

"abc" > 5

Error in py_call_impl(callable, dots$args, dots$keywords): T

A
i

/28

y

Mathematical operations

1+5 57/ 1
#i# 6 ## 5.0
1+ 8 57/ 2
6.0 # 2.5
1 % 5. 57// 2
5.0 ## 2
True * 5 5% 2
5 # 1
(1+03) - (1+13) 7 *x 2

-1] ## 49

Math ops and strings

n

abc" + 5
Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: can only concatenate str (not "int") t
ﬁi Detailed traceback:
File "<string>", line 1, in <module>
"abc" + str(5)
'abch'
"abc" **x 2
Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: unsupported operand type(s) for *x or
ﬁi Detailed traceback:
File "<string>", line 1, in <module>

"abC" * 3

'abcabcabc'

Casting

Explicit casting between types can be achieved via using the types as functions, e.g. int),

float(), bool(), OF str().

float("0.5")
0.5
float(True)
1.0
int(1.1)
1
int("2")
2
int("2.1")

Error in py_call_impl(callable, dots$args, dots

bool(0)
False
bool("hello")
True
str(3.14159)
'3.14159'
str(True)

'True'

Variable assignment

When using Python it is important to think of variable assignment as the process of attaching a
name to an object (literal, data structure, etc.)

X = 100 a=b=>5
X

100 °
x = "hello S
. b

'hello 44 5
B=1+2/3
B

1.6666666666666665

Python variable names can be of any length, and must only contain letters, numbers and
underscores. They may not begin with a number nor conflict with language keywords.
Python 3 supports a subset of unicode for variable names.

string literals

Strings can be defined using a couple of different ways,
'allows embedded "double" quotes'

'allows embedded "double" quotes'
"allows embedded 'single' quotes"

"allows embedded 'single' quotes"

strings can also be triple quoted, using single or double quotes, which allows the string to span
multiple lines.
"""Tine one

line two
line three

'line one\nline two\nline three'

Special values

By default Python does not support missing values and non-finite floating point values are
available but somewhat awkward to use. There is a None type which is similar in spirit and
functionality tonuLL in R.

1/0 5 > float("inf")
Error in py_call_impl(callable, dots$args, dots ## False
fH
Detailed traceback: 5 > float("-inf")
File "<string>", line 1, in <module>

True
1./0
None

Error in py_call_impl(callable, dots$args, dots type(None)
T
Detailed traceback: ## <class 'NoneType'>

File "<string>", line 1, in <module>

WEWill Adt Be using these values much currently, but they will be relevant when discussing

pandas down the road 10 /28

Sequence types

11/28

lists

Python lists are a heterogenous, ordered, mutable containers of objects (they behave very

similarly to lists in R).
[0,1,1,0]

[0, 1, 1, 0]
[0, True, "abc"]

[0, True, 'abc']
[e, [1,21, [3,041]]

[0, [1, 21, [3, [411]

x = [0,1,1,0]
type(x)

<class 'list'>

y = [0, True, "abc"]
type(y)

12 / 2

o]

Common operations

x = [0,1,1,0] len(x)
2 in x ## 4
False max (x)
2 not in x ## 1
True x.count(1)
x + [3,4,5] #i# 2
[0, 1, 1, 0, 3, 4, 5] x.count("1")
X * 2 ## 0

[0, 1,1, 0,0, 1,1, 0]

See here and here for a more complete listings. 13/28

https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types

list subsetting

Elements of a list can be accessed using the (1 method, element position is indicated using 0-
based indexing, and ranges of values can be specified using a slice (start:stop:step).

x =[1,2,3,4,5,6,7,8,9]

x[o] x[0:5:2]

1 ## [1, 3, 5]

x[31] x[0:6:3]

4 # [, 4]

x[0:3] x[0:1en(x):2]

[1, 2, 3] # [1, 3,5, 7, 9]
x[3:] x[0::2]

[4, 5, 6, 7, 8, 9] ## [1, 3, 5, 7, 9]
x[-3:1] x[::2]

#[7, 8, 9] # [1, 3,5, 7, 9]
x[:3] x[::-1]

[1, 2, 3] ## [9, 8,7, 6,5, 4,3, 2, 1]

mutability

Since lists are mutable the stored values can be changed,

x =[1,2,3,4,5] x.insert(3, -5)

X
i[@] - ## [2, 3, 4, -5, 5, 7]
[-1, 2, 3, 4, 5] x.pop()

7

del x[0]
. X

[2, 3, 4, 5
[2, 3, 4, 5] ## [2, 3, 4, -5, 5]
x.append(7)

“ x.clear()

X

[2, 3, 4, 5, 7] v]

15/ 28

lists, assignment, and mutability

When assigning an object a name (x = ...) you do not necessarily end up with an entirely new

object, see the example below where both x and y are names that are attached to the same
underlying object in memory.

X
y

X

##

##

[0,1,1,0]
X

.append(2)

[0, 1, 1, 0, 2]

[o, 1, 1, o, 2]

lists, assignment, and mutability

To avoid this we need to make an explicit copy of the object pointed to by x and point to it with
the namey.

X
y

[0,1,1,0]
x.copy()

x.append(2)

[0, 1, 1, 0, 2]

[0, 1, 1, 0]

More on .copy() and .deepcopy() methods later on in the course. 17/

Exercise 1

Come up with a slice that will subset the following list to obtain the elements requested:

d=1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

e Select only the odd values in this list
e Select every 3rd value starting from the 2nd element.
e Select every other value, in reverse order, starting from the 9th element.

e Select the 3rd element, the 5th element, and the 10th element

[

18 / 28

Value unpacking

lists (and other sequence types) can be unpacking into multiple variables when doing
assignment,

x, y =1[1,2] x, y = [[o,1]1, [2, 3]]
X X
1 ## [0, 1]
y y
2 ## [2, 3]
x, y =101, [2, 3]] (x1,y1), (x2,y2) = [[e,1], [2, 3]]
X x1
1 #H 0
y y1
[2, 3] #HE 1

X2

Extended unpacking

Itis also possible to use extended unpacking via the » operator in Python 3

x, xy = [1,2,3] *x, y = [1,2,3]
X X
1 # [, 2]

y y
#[2, 3] # 3

x, y =101,2,3]

Error in py_call_impl(callable, dots$args, dots$keywords): ValueError: too many values to unpack (expected 2
##

Detailed traceback:

File "<string>", line 1, in <module>

tuples

Python tuples are a heterogenous, ordered, immutable containers of values.

They are nearly identical to lists except that their values cannot be changed - you will most
often encounter them as a tool for combining multiple objects when returning from a function.

1,2,3)

(1, 2, 3)
(1,True, "abc")

(1, True, 'abc')
(1,(2,3))

(1, (2, 3)

tuples are immutable

x = (1,2,3)
x[2] = 5

Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: 'tuple' object does not support item a
#it

Detailed traceback:

File "<string>", line 1, in <module>

del x[2]
Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: 'tuple' object doesn't support item de
it
Detailed traceback:

File "<string>", line 1, in <module>

.clear()

x

Error in py_call_impl(callable, dots$args, dots$keywords): AttributeError: 'tuple' object has no attribute
it

Detailed traceback:

File "<string>", line 1, in <module>

Casting sequences

Itis possible to cast between different sequence types

x = [1,2,3]
y = (3,2,1)

tuple(x)

(1, 2, 3)
list(y)

[3, 2, 1]
tuple(x) == x

False
list(tuple(x)) == x

True

23/28

Ranges

These are the last type sequence type and are a bit special - ranges are a homogenous,
ordered, immutable "containers" of integers.

range(10) list(range(10))

range(0, 10) ## [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
range(0,10) list(range(0,10))

range(0, 10) ## [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
range(0,10,2) list(range(0,10,2))

range(0, 10, 2) # [0, 2, 4, 6, 8]
range(10,0,-1) list(range(10,0,-1))

range(10, 0, -1) ## [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

What makes ranges special is that range(1000000) does not store 1 million integers in memory
but rather just three 3§7*S. 24 198

Strings as sequences

In most of the ways that count we can actually think about Python strings as being ordered,

immutable, containers of unicode characters and so much of the functionality we just saw can

be applied to them.

x = "abc"

x[0]
'a’
x[-1]
'c'
x[2:]
'c'
x[::-1]

'cba'

len(x)
3

"a" in x
True

"bc" in x
True

x[0] + x[2]

'ac'

String Methods

Because string processing is a common and important programming task, the class
implements a number of specific methods for these tasks.

x = "Hello world! 1234"

x.find("!")
11

x.isalnum()
False

x.isascii()
True

x. lower()

'hello world! 1234
More complete list here

x.swapcase()

'hELLO WORLD! 1234'
x.title()

'Hello World! 1234’
x.split(" ")

['Hello', 'world!', '1234']
"|".join(x.split(" "))

'Hello|world!|1234'

https://docs.python.org/3/library/stdtypes.html#string-methods

Exercise 2

String processing - take the given string below and apply the necessary methods to create the

target string.
Source:

"the quick Brown fox Jumped over a Lazy dog"
'the quick Brown fox Jumped over a Lazy dog'
Target:

"The quick brown fox jumped over a lazy dog."

'The quick brown fox jumped over a lazy dog.'

Hardcoding w/ magic numbers is perfectly acceptable here.

o]

Set and Mapping types

We will discuss sets (set) and dictionaries (dict) in more detail next week.

Specifically we will discuss the underlying data structure behind these types (as well as lists
and tuples) and when it is most appropriate to use each.

et

