Lec 03 - Control flow, list
comprehensions
and functions

Statistical Computing and Computation

Sta 663 | Spring 2022

Control Flow

Conditionals

Python supports tradition if / else style conditional expressions,

X = 42 X =0
if x < 0: if x < 0:

print("X is negative") print("X is negative")
elif x > 0: elif x > 0:

print("X is positive") print("X is positive")
else: else:

print("X is zero" print("X is zero")

X is positive ## X is zero

Significant whitespace

This is a fairly unique feature of Python - expressions are grouped together via indenting. This is
relevant for control flow (if, for, while, etc.) as well as function and class definitions and many
other aspects of the language.

Indenting should be 2 or more spaces (4 is the preferred based on PEP 8) or tab characters -
generally your IDE will handle this for you.

If there are not multple expression then indenting is optional, e.g.
if x == 0: print("X is zero")

X is zero

]

https://www.python.org/dev/peps/pep-0008/

Conditional scope

Conditional expressions do not have their own scope, so variables defined within will be
accessible outside of the conditional. This is also true for other control flow constructs (e.g. for,

while, etc.)

s =20
if True:
s =3

3

LN

]

While loops

Repeat until the given condition evaluates to False,

i=17
seq = [i]
while i != 1:
if i %2 == 0:
i/=2
else:
i=3*%x1i + 1
seq. append(i)

seq

[17, 52, 26.0, 13.0, 40.0, 20.0, 10.0, 5.0, 16.0, 8.0, 4.0, 2.0, 1.0]

Anyone recognize what this is an example of?

For loops

Iterates over the elements of a sequence

for w in ["Hello", "world!"]:
print(w, len(w))

Hello 5
world! 6

sum = 0

for v in (1,2,3,4):
sum += v

sum

10

res = []
for ¢ in "abc123def567":
if (c.isnumeric()):
res.append(int(c))
res

[1, 2, 3, 5, 6, 7]

res = []

for i in range(0,10):
res += [i]

res

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

break @and continue

Allow early loop exit or step to next iteration respectively,

for i in range(10): for i in range(10):
if i == 5: ifi%2==0:
break continue

print(i, end=" ")
print(i, end=" ")

01234
13579

print()
print()

loops and el1se?

Both for and while loops can also have e1se clauses which execute when the loop is terminated
by fully iterating (for) or meetings the while condition, i.e. when break does not execute.

From python tutorial - Section 4.4
for n in range(2, 10):
for x in range(2, n):
if n % x ==
print(n, 'equals', x, 'x', n//x)
break
else:
print(n, 'is a prime number"')

2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

pass

This is a expression that does nothing, it can be used when an expression is needed
syntaxtically.

X = -3
if x < 0:
pass

elif x % 2 == 0:
print("x is even")

elif x % 2 == 1:
print("x is odd")

10/

]

List comprehensions

11 /27

Basics

List comprehensions provides a concise syntax for generating lists

res = [] [x*x2 for x in range(10)]
for x in range(10):
res.append(x*x2) ## [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Since it uses the for loop syntax, any sequence is fair game:
[x*x2 for x in [1,2,3]]

[1, 4, 9]
[x**2 for x in (1,2,3)]

[1, 4, 9]
[c.lower() for c in "Hello World!"]

I:Ihl, lel, lll, lll, '0', 1 I’ IWI, '0', lr, |l|, ldl, I!I:I

.

Using if

List comprehensions can include a conditional clause,
[x**2 for x in range(10) if x % 2 == 0]

[0, 4, 16, 36, 64]
[x**2 for x in range(10) if x % 2 == 1]

[1, 9, 25, 49, 81]

The comprehension can include multiple if statements,
[x*x2 for x in range(10) if x % 2 == 0 if x % 3 ==0]

[0, 36]
[x**2 for x in range(10) if x % 2 == 0 and x % 3 ==0]

[0, 36]

13/

Multiple fors

Similarly, the comprehension can also contain multiple for statements,

[(x, y) for x in range(3) for y in range(3)] res = []
for x in range(3):
[(0, 0), (0, 1), (0, 2), (0, @), (1, 1), (1, 2) for y in range(3):

res.append((x,y))
res

[(0, 0), (0, 1), (0, 2), (1, @), (1, 1), (1, 2)

z1ip
This is a useful function for "joining" elements of a sequence,

X
y

[1,2,3]
[3,2,1]

z = zip(x, y)

z

<zip object at 0x1085ee400>
list(z)

[(1, 3), (2, 2), (3, D]
[axxb for a,b in zip(x,y)]

[, 4, 3]
[bxxa for a,b in zip(x,y)]

[3, 4, 1]

15/ 21

zip and length mismatches

If the length of the shortest sequence will be used, additional elements will be ignored (silently)

[1,2,3,4]
range(3)
"ABCDE"

X

y
z

list(zip(x,y))

[, 0), (2, 1), 3, D]
list(zip(x,z))

L1, 'A"), (2, 'BY), (3, 'CY), (4, 'D]
list(zip(x,y,z))

[(1, 0, 'A"), (2, 1, 'B"), (3, 2, 'CY]

16/

]

Exercise 1

Using list comprehensions, complete the following tasks:

® Create a list containing tuples of x and y coordinates of all points of a regular grid for
x€[0,10]and y € [0, 10].
® Countthe number of points where y > x.

® Count the number of points xor yis prime.

]

Functions

18 /27

Basic functions

Functions are defined using def, arguments can be defined with out without default values.

def f(x, y=2, z=3):
print(f"x={x}, y={y}, z={z}")

(1) f(z=-1, x=0)

x=1, y=2, z=3 ## x=0, y=2, z=-1
f(1,z=-1) fO

x=1, y=2, z=-1 ## Error in py_call_impl(callable, dots$args, dots
f("abc", y=True) zi Detailed traceback:

File "<string>", line 1, in <module>
x=abc, y=True, z=3

return Statements

Functions must explicitly include a return statement to return a value.

def f(x): def g(x):

X**2 return x**2
f(2) g(2)
type(f(2)) ik 4

<class 'NoneType'> type(g(2))
<class 'int'>

Functions can contain multiple return statements

def is_odd(x):

if x % 2 == 0: return False
else: return True
is_odd(2)

False

20/ 27

Multiple return values

Functions can return multiple values using a tuple or list,

def f():
return (1,2,3)

fO
#H (, 2, 3)

def g():
return [1,2,3]

g
[, 2, 3]

If multiple values are present and not in a sequence, then it will default to a tuple,

def h(Q):
return 1,2,3

hO

]

]

Doc strings

A common practice in Python is to document a function (and other objects) using a doc string -
this is a short concise summary of the objects purpose. Doc strings are specified by supplying a
string as the very line in the function definition.

def f(O:
"Hello."
pass

f.__doc__

'Hello.'
def g():

"""This function does
absolutely nothing.

pass

g.__doc__

P

'This function does\n absolutely nothing.\n

]

Variadic arguments

If the number of arguments is unknown it is possible to define to define variadic functions

def paste(xargs, sep=" "):
return sep.join(args)

paste("A")

#H A

paste("A","B","C")

'ABC'
paste("1","2" "3" sep=",")

#H '1,2,3"

23 /2]

Positional and/or keyword arguments

def f(pos1, pos2, /, pos_or_kwd, *, kwdl, kwd2):

| Positional or keyword |
| - Keyword only
-- Positional only

For the following function x can only be passed by position and z only by name

def f(x, /, y, *, z):
print(f"x={x}, y={y}, z={z}")

£(1,1,1)

Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: f() takes 2 positional arguments but 3 were given
#i#

Detailed traceback:

File "<string>", line 1, in <module>

f(x=1,y=1,2=1)

Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: f() got some positional-only arguments passed as keyword arguments: 'x
##
Detailed traceback:

File "<string>", line 1, in <module>
f(1,1,2z=1)

Based,on Python tutorial Sec 4.8.3 24 /27

https://docs.python.org/3/tutorial/controlflow.html#special-parameters

Anonymous functions

Can be defined using the 1ambda keyword, they are intended to be used for very short functions
(syntactically limited to a single expression, and not return statement)

def f(x,y): g = lambda x, y: Xx**2 + yx%2
return xx*2 + y*x2

f(2,3) g(2,3)

13 ## 13

type(f) type(g)

<class 'function'> ## <class 'function'>

o]
L

)

Function annotations (type hinting)

Python nows supports syntax for providing metadata around the expected type of arguments

and the return value of a function.

def f(x: str, y: str, z: str) -> str:
return x +y + z

These annotations are stored in the __annotations__ attribute

f.__annotations_

{'x': <class 'str'>, 'y': <class 'str'>, 'z
But doesn't actually do anything at runtime:
f("A","B","C")

' ABC'

f(1,2,3)

6

': <class 'str'>, 'return':

<class 'str'>}

)

Exercise 2

1. Write a function, kg_to_1b, that converts a list of weights in kilograms to a list of weights in
pounds (there a 1 kg =2.20462 Ibs). Include a doc string and function annotations.

2. Write a second function, total_1b, that calculates the total weight in pounds of an order, the

input arguments should be a list of item weights in kilograms and a list of the number of
each item ordered.

o]

]

