Python dict
s are a heterogenous, ordered *, mutable containers of key value pairs.
Each entry consists of a key (an immutable object) and a value (any object) - they are designed around the efficient lookup of values using a key. More on how this works in a bit.
Python dict
s are a heterogenous, ordered *, mutable containers of key value pairs.
Each entry consists of a key (an immutable object) and a value (any object) - they are designed around the efficient lookup of values using a key. More on how this works in a bit.
A dict
is constructed using {}
with :
or via dict()
,
{'abc': 123, 'def': 456}
## {'abc': 123, 'def': 456}
dict([('abc', 123), ('def', 456)])
## {'abc': 123, 'def': 456}
Python dict
s are a heterogenous, ordered *, mutable containers of key value pairs.
Each entry consists of a key (an immutable object) and a value (any object) - they are designed around the efficient lookup of values using a key. More on how this works in a bit.
A dict
is constructed using {}
with :
or via dict()
,
{'abc': 123, 'def': 456}
## {'abc': 123, 'def': 456}
dict([('abc', 123), ('def', 456)])
## {'abc': 123, 'def': 456}
if all keys are strings then it is also possible use the key value pairs as keyword arguments to dict()
,
dict(hello=123, world=456) # cant use def here as it is reserved
## {'hello': 123, 'world': 456}
As just mentioned, key values for a dict
must be an immutable object (number, string, or tuple) and keys do not need to be of a consistent type.
{1: "abc", 1.1: (1,1), "one": ["a","n"], (1,1): lambda x: x**2}
## {1: 'abc', 1.1: (1, 1), 'one': ['a', 'n'], (1, 1): <function <lambda> at 0x108c3db80>}
As just mentioned, key values for a dict
must be an immutable object (number, string, or tuple) and keys do not need to be of a consistent type.
{1: "abc", 1.1: (1,1), "one": ["a","n"], (1,1): lambda x: x**2}
## {1: 'abc', 1.1: (1, 1), 'one': ['a', 'n'], (1, 1): <function <lambda> at 0x108c3db80>}
Using a mutable object (e.g. a list) will result in an error,
{[1]: "bad"}
## Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: unhashable type: 'list'## ## Detailed traceback:## File "<string>", line 1, in <module>
when using a tuple, you need to be careful that all elements are also immutable,
{(1, [2]): "bad"}
## Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: unhashable type: 'list'## ## Detailed traceback:## File "<string>", line 1, in <module>
The []
operator exists for dict
s but is used for value look up using a key,
x = {1: 'abc', 'y': 'hello', (1,1): 3.14159}
x[1]
## 'abc'
x['y']
## 'hello'
x[(1,1)]
## 3.14159
x[0]
## Error in py_call_impl(callable, dots$args, dots$keywords): KeyError: 0## ## Detailed traceback:## File "<string>", line 1, in <module>
x['def']
## Error in py_call_impl(callable, dots$args, dots$keywords): KeyError: 'def'## ## Detailed traceback:## File "<string>", line 1, in <module>
As dict
s are mutable it is possible to insert new key value pairs as well as replace values associated with a key.
x = {1: 'abc', 'y': 'hello', (1,1): 3.14159}
As dict
s are mutable it is possible to insert new key value pairs as well as replace values associated with a key.
x = {1: 'abc', 'y': 'hello', (1,1): 3.14159}
# Insertx['def'] = -1x
## {1: 'abc', 'y': 'hello', (1, 1): 3.14159, 'def': -1}
As dict
s are mutable it is possible to insert new key value pairs as well as replace values associated with a key.
x = {1: 'abc', 'y': 'hello', (1,1): 3.14159}
# Insertx['def'] = -1x
## {1: 'abc', 'y': 'hello', (1, 1): 3.14159, 'def': -1}
# Replacex['y'] = 'goodbye'x
## {1: 'abc', 'y': 'goodbye', (1, 1): 3.14159, 'def': -1}
As dict
s are mutable it is possible to insert new key value pairs as well as replace values associated with a key.
x = {1: 'abc', 'y': 'hello', (1,1): 3.14159}
# Insertx['def'] = -1x
## {1: 'abc', 'y': 'hello', (1, 1): 3.14159, 'def': -1}
# Replacex['y'] = 'goodbye'x
## {1: 'abc', 'y': 'goodbye', (1, 1): 3.14159, 'def': -1}
# Deletedel x[(1,1)]x
## {1: 'abc', 'y': 'goodbye', 'def': -1}
x.clear()x
## {}
x = {1: 'abc', 'y': 'hello'}
len(x)
## 2
list(x)
## [1, 'y']
tuple(x)
## (1, 'y')
1 in x
## True
'hello' in x
## False
x = {1: 'abc', 'y': 'hello'}
len(x)
## 2
list(x)
## [1, 'y']
tuple(x)
## (1, 'y')
1 in x
## True
'hello' in x
## False
x.keys()
## dict_keys([1, 'y'])
x.values()
## dict_values(['abc', 'hello'])
x.items()
## dict_items([(1, 'abc'), ('y', 'hello')])
x | {(1,1): 3.14159}
## {1: 'abc', 'y': 'hello', (1, 1): 3.14159}
x | {'y': 'goodbye'}
## {1: 'abc', 'y': 'goodbye'}
See more about view objects here
In Python set
s are a heterogenous, unordered, mutable containers of unique immutable elements.
dict
s are constructed using {}
(without a :
) or via set()
,
{1,2,3,4,1,2}
## {1, 2, 3, 4}
set((1,2,3,4,1,2))
## {1, 2, 3, 4}
set("mississippi")
## {'s', 'm', 'i', 'p'}
In Python set
s are a heterogenous, unordered, mutable containers of unique immutable elements.
dict
s are constructed using {}
(without a :
) or via set()
,
{1,2,3,4,1,2}
## {1, 2, 3, 4}
set((1,2,3,4,1,2))
## {1, 2, 3, 4}
set("mississippi")
## {'s', 'm', 'i', 'p'}
all of the elements must be immutable (and therefore hashable),
{1,2,[1,2]}
## Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: unhashable type: 'list'## ## Detailed traceback:## File "<string>", line 1, in <module>
Sets do not make use of the []
operator for element checking or removal,
x = set(range(5))x
## {0, 1, 2, 3, 4}
x[4]
## Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: 'set' object is not subscriptable## ## Detailed traceback:## File "<string>", line 1, in <module>
del x[4]
## Error in py_call_impl(callable, dots$args, dots$keywords): TypeError: 'set' object doesn't support item deletion## ## Detailed traceback:## File "<string>", line 1, in <module>
Sets have their own special methods for adding and removing elements,
x = set(range(5))x
## {0, 1, 2, 3, 4}
x.add(9)x
## {0, 1, 2, 3, 4, 9}
x.remove(9)x.remove(8)
## Error in py_call_impl(callable, dots$args, dots$keywords): KeyError: 8## ## Detailed traceback:## File "<string>", line 1, in <module>
x
## {0, 1, 2, 3, 4}
x.discard(0)x.discard(8)x
## {1, 2, 3, 4}
x = set(range(5))x
## {0, 1, 2, 3, 4}
x = set(range(5))x
## {0, 1, 2, 3, 4}
3 in x
## True
x.isdisjoint({1,2})
## False
x <= set(range(6))
## True
x >= set(range(3))
## True
x | set(range(10))
## {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
x & set(range(-3,3))
## {0, 1, 2}
x - set(range(2,4))
## {0, 1, 4}
x ^ set(range(3,9))
## {0, 1, 2, 5, 6, 7, 8}
5 in x
## False
x.isdisjoint({5})
## True
x.issubset(range(6))
## True
x.issuperset(range(3))
## True
x.union(range(10))
## {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
x.intersection(range(-3,3))
## {0, 1, 2}
x.difference(range(2,4))
## {0, 1, 4}
x.symmetric_difference(range(3,9))
## {0, 1, 2, 5, 6, 7, 8}
It is possible to use comprehensions with either a set
or a dict
,
# Set{x.lower() for x in "The quick brown fox jumped a lazy dog"}# Dict
## {'f', 'b', 'n', 'q', ' ', 'p', 't', 'e', 'i', 'j', 'm', 'h', 'z', 'y', 'r', 'u', 'x', 'c', 'a', 'l', 'g', 'o', 'k', 'd', 'w'}
names = ["Alice", "Bob", "Carol", "Dave"]grades = ["A", "A-", "A-", "B"]{name: grade for name, grade in zip(names, grades)}
## {'Alice': 'A', 'Bob': 'A-', 'Carol': 'A-', 'Dave': 'B'}
It is possible to use comprehensions with either a set
or a dict
,
# Set{x.lower() for x in "The quick brown fox jumped a lazy dog"}# Dict
## {'f', 'b', 'n', 'q', ' ', 'p', 't', 'e', 'i', 'j', 'm', 'h', 'z', 'y', 'r', 'u', 'x', 'c', 'a', 'l', 'g', 'o', 'k', 'd', 'w'}
names = ["Alice", "Bob", "Carol", "Dave"]grades = ["A", "A-", "A-", "B"]{name: grade for name, grade in zip(names, grades)}
## {'Alice': 'A', 'Bob': 'A-', 'Carol': 'A-', 'Dave': 'B'}
Note that tuple
comprehensions do not exist,
# Not a tuple(x**2 for x in range(5))# Is a tuple - cast a list to tuple
## <generator object <genexpr> at 0x108c2c350>
tuple([x**2 for x in range(5)])
## (0, 1, 4, 9, 16)
These are heterogenous, ordered, mutable collections of elements and behave in much the same way as list
s. They are designed to be efficient for adding and removing elements from the beginning and end of the collection.
These are not part of the base language and are available as part of the built-in collections
library. More on libraries next time, but to get access we will need to import the library or just the deque
function from the library.
import collectionscollections.deque([1,2,3])
## deque([1, 2, 3])
from collections import dequedeque(("A",2,True))
## deque(['A', 2, True])
x = deque(range(3))
x = deque(range(3))
Values may be added via .appendleft()
and .append()
to the beginning and end respectively,
x.appendleft(-1)x.append(3)x
## deque([-1, 0, 1, 2, 3])
x = deque(range(3))
Values may be added via .appendleft()
and .append()
to the beginning and end respectively,
x.appendleft(-1)x.append(3)x
## deque([-1, 0, 1, 2, 3])
values can be removed via .popleft()
and .pop()
,
x.popleft()
## -1
x.pop()
## 3
x
## deque([0, 1, 2])
maxlen
deque
s can be constructed with an options maxlen
argument which determines their maximum size - if this is exceeded values from the opposite side will be removed.
x = deque(range(3), maxlen=4)x
## deque([0, 1, 2], maxlen=4)
maxlen
deque
s can be constructed with an options maxlen
argument which determines their maximum size - if this is exceeded values from the opposite side will be removed.
x = deque(range(3), maxlen=4)x
## deque([0, 1, 2], maxlen=4)
x.append(0)x
## deque([0, 1, 2, 0], maxlen=4)
x.append(0)x
## deque([1, 2, 0, 0], maxlen=4)
x.append(0)x
## deque([2, 0, 0, 0], maxlen=4)
maxlen
deque
s can be constructed with an options maxlen
argument which determines their maximum size - if this is exceeded values from the opposite side will be removed.
x = deque(range(3), maxlen=4)x
## deque([0, 1, 2], maxlen=4)
x.append(0)x
## deque([0, 1, 2, 0], maxlen=4)
x.append(0)x
## deque([1, 2, 0, 0], maxlen=4)
x.append(0)x
## deque([2, 0, 0, 0], maxlen=4)
x.appendleft(-1)x
## deque([-1, 2, 0, 0], maxlen=4)
x.appendleft(-1)x
## deque([-1, -1, 2, 0], maxlen=4)
x.appendleft(-1)x
## deque([-1, -1, -1, 2], maxlen=4)
This is a tool that is used to describe the complexity, usually in time but also in space / memory, of an algorithm. The goal is to broadly group algorithms based on how their complexity grows as the size of an input grows.
Consider a mathematical function that exactly captures this relationship (e.g. the number of steps in a given algorithm given an input of size n). The Big-O value for that algorithm will then be the largest term involving n in that function.
Complexity | Big-O |
---|---|
Constant | O(1) |
Logarithmic | O(log n) |
Linear | O(n) |
Quasilinear | O(n log n) |
Quadratic | O($n^2$) |
Cubic | O($n^3$) |
Exponential | O($2^n$) |
Generally algorithms will vary depending on the exact nature of the data and so often we talk about Big-O in terms of expected complexity and worse case complexity, we also often consider amortization for these worst cases..
Operation | list | dict (& set) | deque |
---|---|---|---|
Copy | O(n) | O(n) | O(n) |
Append | O(1) | --- | O(1) |
Insert | O(n) | O(1) | O(n) |
Get item | O(1) | O(1) | O(n) |
Set item | O(1) | O(1) | O(n) |
Delete item | O(n) | O(1) | O(n) |
x in s |
O(n) | O(1) | O(n) |
pop() |
O(1) | --- | O(1) |
pop(0) |
O(n) | --- | O(1) |
All of the values presented represented reflect the average Big O time complexity.
For each of the following scenarios, which is the most appropriate data structure and why?
A fixed collection of 100 integers.
A stack (first in last out) of customer records.
A queue (first in first out) of customer records.
A count of word occurances within a document.
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |